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AFOSR-77-3303 FINAL TECHNICAL REPORT

1 APRIL, 1977 TO 31 JANUARY, 1982

1) Abstract

We have provided the only significant experimental and analytical

data on pseudo-stationary oblique-shock-wave reflections in monatomic

(Ar), diatomic (02, H 2 ' air), triatomic (C02) and polytomic (SF6 )

gases in the form of isopycnics and shock Mach number - wedge angle

(Ms, w ) - plots of value to the military (AFWL, DNA, ARO, BRL,NSWL,

DRES, etc.), industry (R & D Associates, Physics International, NASA,

etc.) and universities. Our laboratory results have been invaluable

to field experiments and to computational fluid dynamicists. The

latter have had to develop new, improved codes to match our accurate

experimental data.

Our results on the production of neutrons and y-rays by explosive-

driven implosions in D2 have now been published. They have attracted

an international interest. The method provides a simple means of

studying fusion plasmas at extreme temperatures and pressures as well

as solid-phase transitions from carbon to diamond and other new materials.

The reports on the dynamics of dusty-gas flows produced by shock

waves are "best-sellers" and are out of print. We hope to test our

analyses in our new 10cm x 20cm dusty gas shock tube built for this

purpose during the year with funds from the Canadian Defence Research

Establishment Suffield (DRES). The analytical and experimental data

has important applications Lo combustion, dust explosions, damage from

blast waves and cosmic gasdynamics.

Our extensions of the random choice method (RCM) have aided us

(and others) greatly in analyzing explosion-implosion dynamics,

detonations, dusty-gas flows, and viscous heat-conducting vibrationally-

excited shock-wave transitions in air for weak spherical N-waves.
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The virtue of this method is that it does not suffer from artificial

viscosity (implicit or explicit) smearing of shock waves and contact

surfaces. If some method could be found to apply RCHI to pseudo- and

non-stationary flows, it would revolutionize computational shock fluid

dynamics.

Our analytical work on swirling turbulent combustion flows has

progressed very well. Experimental data are now being accumulated

using laser Doppler anemometry (LDA). This work is not only of

interest to researchers in various establishments (including AFOSR)

but to industry as well. In this regard, we have received some

financial support from Canadian Pratt and Whitney to set up the LDA

equipment.

2) Research Objectives

The research objectives are to make significant advances in the

field of "Aerophysical Aspects of Gas and Plasma Flows", useful to

the varying supporting agencies and to research and development in

industry. Our objectives have been met to a large extent. This state-

ment can be verified from our numerous publications in distinguished

journals and by our peers in the field internationally.

3) Detailed Summary and Perspectives

Although the phenomenon of oblique-shock-wave reflections has been

known for a long time, it is only within the period of this Grant that

order and understanding has been brought to this subject. Once and for

all, we have shown that the domains and boundaries of regular (RR), single-

rMach (SMR), complex-iach (CMR) and double-Mach reflections (DMR) can be

plotted as a function of the initial conditions, namely, shock wave Mach

number Ms and wedge angle 0w -plane, for a perfect gas. If real-gas

effects take place then the initial temperature To and pressure Po must
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be added. The results for argon (monatomic gas) are shown in Fig. 1.

It is seen that the analysis is good and agrees with experiment for a

perfect gas in the range tested for Ms<lO. The results for air, N2 and

02 (didtomic gases) appear in Fig. 2. It can be seen that the agreement

with a perfect gas in this case is quite good except for the S1R4CMR

transition line. The experimental data consists of our own work and from

others. Figure 3 shows the results for CO2 (a triatomic linear molecule).

Again the data agree well with analysis in the range l<Ms<lO.

These two-dimensional data along with interferometric plots of

lines of constant density (isopycnics have formed the basis for testing

the validity of several computational methods of predicting the flow

quantities. So far, the computational schemes are quite good for

predicting shock shapes and wall-density distributions but poor for

giving results on isopycnic shapes and distributions. These disagreements

are being investigated by many government, university and industrial

establishments in a number of countries. Undoubtedly better computational

procedures will evolve in the near future.

The foregoing laboratory results have been successfully applied

by AFWL, DNA and BRL among others to predict shock-wave configurations

and pressure loadings in field tests on vehicles and missile sites.

The transition lines themselves must be fine-tuned in order to

improve the agreement between analysis and laboratory experiments. A

great deal has already been done in this respect and this will be the

subject of future reports under the new Grant AF-AFOSR-82-0096.

The production of fusion plasmas in deuterium cannot be described

more simply than in the brief paper in Physics of Fluids by Glass and

Sagie, "Application of Explosive-Driven Implosions to Fusion", (Ref. 1).

A copy is enclosed. This unique method of producing neutrons, y-rays
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and solid-phase transitions (graphite to diamond of lO-201%m dia)

offers simple, new possibilities for many avenues of physical research

of interest to industry, universities and the military. As a matter

of fact, 3M of Canada, who are interested in industrial diamonds, have

taken up our research and development program on the use of explosive-

driven implosions to generate diamonds from graphite. Several R & D

personnel from 3M are stationed at our Institute pursuing this work.

It is an excellent example of technology transfer from a university

to industry.

Although the dynamics of dusty-gas flows is of much importance

to science, industry and the military, very limited research and develop-

ment was conducted in the past in this field. In a more practical

vein, very little is known about nonstationary drag and heat transfer

experienced by individual particles accelerated by shock or blast waves.

Neither is it known precisely what impact pressure such flows impose

on structures, nor what damage may result to vehicles, hardened missile

sites or buildings affected by high-speed high-pressure dusty-gas flows.

In order to understand such problems, the two avenues of analysis and

experiment have been undertaken. Our analytical work on the flow in

a dusty-gas shock tube (Figs. 4 to 6) and the passage of a shock wave

through a dusty-gas layer (Fins. 7 and 8) (in great demand internationally),

will form the basis for our experimental work. For the latter, we have

built and will instrument a 3-3/4 x 8 in. dusty-gas shock tube 60 ft.

long, in order to check our analyses by using glass spheres as homogeneous

dust in the lO-5 pm range. Optical methods, laser Doppler anemometry,

pressure gauges, impact gauges, heat-transfer gauges and other devices

will be used for this purpose. We estimate the dusty-gas shock tube

will cost $500,000.00 and it is being supported by Canadian funds. Here
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is an excellent example of AFOSR benefits coming from an almost

entirely Canadian funded project.

The random-choice method (RCM) of analyzing nonstationary planar,

cylindrical and spherical flows with shock waves has proven to be

one of the most powerful and accurate computational methods available

today. Its power and accuracy lies in the fact that it makes no use

of finite difference methods which suffer from an inherent explicit or

implicit artificial viscosity that smears shock fronts and contact

surfaces in a flow. Instead it solves the Riernann problem at each time

step in the numerical analysis in a random fashion. The results provide

sharp fronted shocks and contact surfaces. This method has been applied

successfully at our Institute to numerous problems such as explosion,

implosion and detonation-wave dynamics, nonlinear planar-wave interactions

and dusty-gas dynamics. However, we have also succeeded in using the

method for spherical N -.ave shock-front transitions with viscosity,

heat conductivity and vibrational excitation. The N-waves were

generated by exploding wires. The explosion process was modelled by

considering the N-waves produced by a small pressurized sphere

which is suddenly ruptured. The sphere d':meters and the initial

conditions determine the properties of the N-waves that simulate those

actually obtained from exploding wires. Some of the results appear in

Figs. 9 and 10. The comparison between analysis and experiment is

good. This research will help us understand the properties of N-waves

generated in the atmosphere by SST's and will explain the order-of-

magnitude discrepancy between measured and predicted risetimes of sonic

boom ri-waves. The risetimne controls the human-startle effect. The

shorter the risetime (microseconds), the more annoying is the boom.

So far the RCIM has been successful in treating nonstationary one-

E L -----
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dimensional flows. What is required for the treatment of pseudo-stationary

two-dimensional oblique-shock-wave reflections or nonstationary spherical

shock-wave reflections is a RCM algorithm to handle such complex flows.

So far, despite the endeavours of many able computational fluid

dynamicists, the search has proved to be very elusive.

The analytical-numerical program with coupled gasdynamic and

chemical-dynamic equations of motion to deal with turbulent, swirling,

combusting flows has been completed. Now emphasis has been placed on

laser Doppler anemometer (LDA) experimentation shakedowns in order

to measure the turbulence components and Reynolds stresses at a given

station of a combustor. The results can then be used as data input in

the analysis for predicting these quantities at any other station

downstream. Their new measurements can be made at the predicted stations

in order to check the various models of turbulence and the coupled

equations 3f motion.

As a fall out of the LDA work, it has been confirmed that particle

size and their velocity can readily be measured to 1%. This will make it

possible to measure fuel-spray size and velocity distributions in

combustors which is of much importance to the jet-engine industry in

the USA and Canada.

Finally, our research and development work in the foregoing areas

is continuing in a vigorous manner. Many reports are in preparation

in the five major areas considered. Several papers have been sent to

distinguished journals. One has already been accepted for publication

in the Proceedings of the Royal Society of London and others will follow.

Details will be given under Grant AF-AFOSR-82-0096 in the near future.

Dr. I. I. Glass
Principal Investigator
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Tabl. 1 Initial conditions for com mlation.

. P, TI Rh Ro h 4x vibrational
(K) (% (cm) (cm) relaxation

A 2.44 273 - 1.15 0. 0383 - perfect, imi-cid
B 2.41 273 - 1.15 - 0. 0383 -- perfv'ti, viscous

C 2.44 273 67 1.15 0.-104 0.0383 0, real, inviscid

D 2.44 273 67 1.15 0.4-0 0.0383 0, real, viscous

E 1.8 2S9 50 1.15 0.888 0.0383 0, real, %iscous

F 1.8 273 67 1.15 0.404 0.0383 0, real, viscous

C 1.8 289 50 11.5 0.888 0.383 0' real, viscous

H 1.8 289 50 57.5 0.888 1.917 0' real, viscous

1 1.8 289 50 57.5 0.888 1.917 0, - N, real, viscous
J 1.8 289 -- 1.15 --- 0.0383 - perfect, inmiscid

10

S10-

0A

R0

Fig. 9 Path of shock front.

t t R'=RIR.

al speed of sound

& radius of pressurized sphere
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Application of explosive-driven implosions to fusion
I. 1. Glass and 0. SagieaI

Inorttut' It .,Aep-ospac Studie . 1 "nwersv o'fl oron o, ront o, Ca adu
geceied I3 Ma 148I, accepted 20 November 1981t

Our eplosise-drien implosion facility was used to produce hemispherical implosions in a stoichiometric

mixture of deutenum-oxygen A high-resolution scintillator detection system measured neutrons and y rays

resulting most likelk from the tusion of deuterium

I. INTRODUCTION photoniultipher assemblies (Fig. 1). The first detector
is located at the outer surface of the front plate. 30 cim

The Institute for Aerospace Studies hemisphericalitn- iroin the implosion focus while the second is 80 cmn

plosion chamber is a unique device for producing ex- from the locus. The first oscilloscope displays the en-

plosive-driven implosions which are stable and well- tire ignition-detonation-implosion process lasting about

focused at the geometric center in a safe and reusable 50 ,sec and the subsequent events. The second oscillo-

facilitv. It has been used as a driver for launching hy- scope is designed to display the full undisturbed shape

pervelocity projectiles,2 to generate intense planar of the first signal coming from 'he second detector and

shock waves,' and to produce diamonds from graphite.4  therefore sweeps at a rate of 50 -- :/division. From

In the present study is was utilized to bring about fusion its shape it would have been possible to obtain the neu-

in a deuterium-oxvgen plasma. tron-velocity distribution and its flux. However, the

second oscilloscope can only trigger if a large enough
signal (-0.5 V) is produced by the first detector. This

II. EXPERIMENTAL EQUIPMENT requires about two neutrons to cross the scintillator

The implosion chamber (Fig. 1) consists essentially of within 10 nsec. The threshold level is essential to pre-

two massive Hating steel plates. The rear pLo e con- vent false t,-iggertnc arising lrum the photonuh1)ier

tain., a 20-c m di ai henisplierical cayit ' V. Into it i fit- dark current, ostiic ra s and igni: ion noise.

ted an explosive packace consisting of a copper liner to III. EXPERIMENTAL RESULTS
which is bonded a shell of supertine PETN secondary
explosive (of about 3 mnm in thickness weighing 97 g and Records of voltage versus time from the first detector

releasing about 0.6 MJ of energy for the case reported). for two runs without ka) and with fusion (b) are shown in

The front plate contains an exploding nickel wire (0.13- Fig. 2. Initially. there are large oscillations arising

mm diamX l-mtn long) and the gas inlet and outlet. from the capacitor discharge to the exploding wire,

Both plates are fastened together by 32 bolts. The hem- which are damped out in about 35 psec. In the case ol

ispherical cavity is filled with a stoichiometric mixture no fusion when a stoichiometric mixture of H2-02 is de-

of deuterium-oxygen (in this case about 55 atm releas- tonated, no other signals appear. However, with a

ing about 0.4 MJ of energy). The gas is detonated at the stoichiometric mixture of D2 -0 2 when fusion occurs at

geometric center by the exploding wire. The gaseous about 50 psec, about 20 negative signals appear in a

detonation wave instantly and simultaneously explodes random time and amplitude distribution over a period of

the PETN on impact, thereby generating a well-focused about 50 tisec. The maximum amplitude of about 0.2 V

implosion wave. This wave reflects at the geometric corresponds to a single impact by a neutron or a '

center, leaving a small pocket of plasma at extreme

pressure (megabars) and temperature (millions of de- REAR PLATE CONICAL

grees) in which a deuterium fusion reaction occurs. To 32 BOLTS LINER PLATE

our knowledge this is the most direct method of initiat- FRONT PLATE

ing fusion using only chemical energy. We have tried
other indirect methods to obtain fusion, where a small

capsule containing deuterium was placed at the focal BALo PM TECTORs

point of the implosion. One of these was successful and 10

provided almost identical results, thereby lending sup- 470 Q 7

port to the simple direct technique. Details can be 3

found in Ref. 5. SCINTILLATOR (No I-T, I

The detection system for sensing neutrons and y rays
(produced by the neutrons and their interactions with the NUTS

steel implosion chamber) consists of two scintillator- X PLOSIVE 0

SHELL COPPER CARRIER SHELL

_________2Ot*O

GAS MIXTURE NOTE ALL DIMENSIONS IN CM

t
tOn sabbatical leave from the Nuclear Research Centre, FTG. 1. Schematic of implosion-chamber facility and scintil-

Beersheva, Israel. lator detectors.
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rays than the direct neutrons from the implosion focus.
- II Owing to the large attenuation of the inelastically scat-

"II.tered neutrons, the phenomenon is spread out and de-
layed as recorded in Fig. 2(b).

(a) IV. DISCUSSION AND CONCLUSIONS

A consideration of the plasma parameters shows that
the peak temperatures may be obtained at a radius of a-
bout 10 pm with an ion density of about 5x 102 ions/cm3 .
The implosion time is then about 10-1° sec. Although

I Iradiation and conduction heat losses are significant,
10 /.sec / div they would allow temperatures to be reached up to a few

keV.

Discussions of different work, with greater complex-
itv, to produce neutrons in deuterium by explosive

0 means can be found in Ref. 5, as well as some consid-
erations of the possibilities of scaling the present ap-

(b) paratus to obtain thermonuclear fusion. Here, we have
shown that neutrons and -y rays can be obtained from
nuclear reactions by very direct means from an explo-
sive-driven hemispherical-implosion focus in D2-0 2

mixtures. There is little doubt that temperatures in
the keV range were reached thereby approaching
thermonuclear fusion conditions. Much work remains

10 p.sec / div to determine the details of the physical properties of
such plasmas and the resulting nuclear collision pro-

FIG. 2. Oscilloscope record from detector No. 1. (a) With- cesses.

out fusion. 211- O mixture at 27.2 atm and 127 g PETN ex-
plosive ih) With fusion, 2P,, 0, mixture at 54.4 atm and 97
IETN explosive; iti arrival of i plosion and beginning of

vents, 0ii) ignition noise. ACKNOWLEDGMENTS
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